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supary: The type 2 intramolecular Diels-Alder reaction is utilized to assemble a taxol 
precursor. 

The Type 2 intramolecular Diels-Alder cycloaddition provides a direct entry into the 

tricycle [9.3.1.03” ] pentadecane ring system (eg. 11, the key substructural unit of a number 

of biologically important naturally occurring molecules including taxol.’ We recently reported 

examples of this strategy for the synthesis of C-aromatic derivatives of the ring system.” 3 

In the present conrnunication we develop an approach that is useful for the synthesis of 

precursors to the saturated tricyclic skeleton4 incorporating functionality at C-l, a strategic 

location for synthetic efforts directed towards taxol. 

A direct approach, employing the C-ring at a cyclohexane oxidation level, Was not 

(1) 

successful under thermal conditions. Thus, Diels-Alder precursor 1’ Was recwered unchanged 

after heating at 2OOOC for 24h. Interestingly, at higher temperatures ( 220° C, 48h, xylene) , 

cycloadduct could not be detected but rearrangement to 2 Was observed.’ The reaction 

presumably arises by a L3.31 sigmatropic rearrangement of an en01 tautomer of 1. 

The law thermal reactivity of Diels-Alder precursor 1 is attributed, in part, to the 

conformational mobility of cyclohexane 1. Indeed, earlier studies on related cycloadditions 

revealed that When diene and dienophile are locked in a cis relationship, rate enhancements of 

up to lo6 may be observed over conformationally mobile analogs.* A modified approach, there- 

fore, utilizes a 1,2_disubstituted cyclohexene derivative 3a to set diene and dienophile in 

close proximate relationship. 
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Synthesis of 3a was achieved by treatment of 1,3-cyclohexadione with sodium ethoxide and 

2,3_dibrompropene for 24h at reflux followed by isolation and esterification (CI$N2/Et20) to 

afford vinylogous ester 5 in a combined 52% yield.’ The diene unit is introduced by reaction 

of 5 with the Grignard reagent derived from bromcdiene 6” followed by hydrolytic work up in 2M 

IX1 to give unsaturated bromoketone 7 (49%). Protection of the enone was eventually 

accomplished with ethandithiol, BF:, .OEt, for 22h in methanol9 (77%). Dienophile activation 

proceeded upon metalation of the bromodithiane (t-BuLi, -78’C, ET20, lh) followed by treatment 

with DHF (-78’ + OOC). After aqueous quench and chromatography (SiO,) aldehyde 3a was isolated 

in 71% yield.” 

0 I 

6 

2 

Despite the constraints imposed upon diene and dienophile, Diels-Alder reactivity of 3a is 

low. However, after 86h at 18O’C (O.OlM toluene) 12% of cycloadduct 8 is isolated.” This 

situation is improved somewhat by Lewis acid catalysis. upon treatment of 3a with Et,AlCl (4 

eg., CH,Cl, RT) cycloadduct 8 could be obtained in yields up to 38%.‘* Interestingly, Lewis 

acids such as Me,AlCl, SnCl, , TiCl, , BF, .OEt, and ZnCl, were not effective for the cyclo- 

addition. lko modifications of the Diels-Alder precursor were also prepared (3b,c) but these 

did not prove to be as effective as 3a in the thermal or Lewis acid catalyzed qcloaddition 

reaction. 
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Based upon previous studies of the tricycle [9.3.1.03”l pentadecane ring system,3”13 we 

anticipated the possibility of several discrete low energy conformations of this molecule. 

Indeed, the NMR spectrum of cycloadduct 8 (prepared by Lewis acid catalysis) exhibits six 

methyl resonances and two aldehyde signals (10.0 and 9.69 ppa, CDcl, ) . The ratio of intensi- 

ties of the two aldehyde signals is 1:l. Since this ratio did not change upon heating at 13O’C 

(p-xylene) we conclude that the two conformations are of equal energy. Variable temperature 

NHR spectroscopy reveals substantial peak broadening at 130°C but incomplete coalescence. Ihis 

experiment permits an estimate of the barrier separating the two conformational isomers to be 

in excess of 18 kcal+A. The failure to observe separation of the two conformational isomers 

by HPLC or column chromatography requires that the barrier for interconversion be less than 25 

kcal/laol . l4 

lb l Aa'< 25 kwllmolo 

UNDO - a EXO-II 

We believe this strategy provides an expeditious entry into taxane precursors. Of particu- 

lar importance is the opportunity to incorporate bridgehead C-l substituents and residual 

functionality that facilitates introduction of the methyl group at C-8, the remaining key 

carbon atom necessary for synthesis of the natural product skeleton. Efforts are presently 

underway to accomplish this goal. 

zUknou1edeNnt: We are grateful to the National Institutes of Health for financial support of 

this work. 
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All new compounds gave spectral data consistent with thelassigned structures. 
Compound 2 (mixture of diastereomers) Diastereomer A: HNMR(CD 250 MHz) 8 6.46 (d, 
lH, J = 1.7H2, vinyl), 5.64 (d, lH, J = 1.3 Hz, vinyl), 5.24 (m,'lfi,)vinyl), 4.93 (m, lH, 
vinyl), 3.63 (s, 3H, -GMe), 3.42 (d of d, lH, J - 13.1 Hz, J = 5.5 Hz), 2.68-2.65 (m, lH), 
2.43 (d of d, lH, J - 7.7 Hz, J = 13.9 Hz), 2.30 (d, lH, J - 12.4 Hz), 2.18-2.11 (& 2H), 
2.04-1.89 (m, 8H), 1.82 (6, 3H, -Me), 1.47-1.36 (m, 5H), 0.93 (s, 3H, -Me) ppm; C NMR 
(CDq, 125.8 MHz) 1 212.6, 168.2, 147.1, 138.9, 136.9, 127.8, 125.7, 113.8, 54.1, 52.6, 
49.2, 43.7, 40.4, 36.7, 32.7, 29.7, 25.7, 23.4, 23.2, 22.4, 20.1 ppm; IR (film) ?075 w, 
(vinyl C-H), 2928 s, (aliphatic C-H), 1717 s, (Cd), 1631 m and 1439 s, (C-C) cm- - high 
resolution calculated for C y203: 332.2351, found: 332.2354. Diastereomer B: 

250 MHZ) L 6 43 (d ?&I, 
'H NMR 

$%I;, 4.92 (m, lHj vinyi) 
J - 1.7 Hz, vinyl), 5.60 (s(br), lH, vinyl), 5.22 (m, lH, 

, 3.60 (s, 3H, -GMe), 3.38 (d of d, lH, J = 5.6 Hz, J - 14.1 
HZ), 2.70-2.65 (m, lH), 2.47-2.28 (m, 3H), 2.15-2.09 (m, lH), 2.00 (s, 3H, -Me), 1.95 (s, 

(s, 3H, -Me), 2.00-1.89 (m, 2H), 1.65-1.46 (m, 5H), 0.97 (s, 3H, -Me) ppm 
125.8 MHZ) 6 212.3, 168.2, 147.0, 138.9, 136.8, 127.8, 125.8, 113.9, 54.6, 

52.5, 48.8, 3419, 36.5, 36.2, 32.7, 29.3, 28.3, 25.7, 23.4, 22.4, 20.1 ppm; IR (film) 3075 
w, (vinyl C-H), 2928 s, (aliphatic C-H), 1717 s, (C-G), 1631 m and 1439 s, (C-C) cm-'; 
high resolutipn calculated for C H,,O : 332.2351, found: 332.2337. 
compound5: HNMR(CDC1 250 i&s) d 5.44 ( m, lH, vinyl), 5.30 (m, lH, vinyl), 3.82 (s, 
3H, -G&), 3.41 (s, 2H, ajl)ylic), 2.60 (t, 2H, J = 6.1 Hz), 2.36 (t, 2H, J = 6.7 Hz), 2.01 
(quint, 2H, J = 6.4 Hz) ppun; 13C NMR (CXl , 62.9 m-k) L 197.2, 174.4, 132.4, 115.7, 55.9, 
36.6, 34,2, 25.3, 21.1 ppm; IR (film) 2360 m, (aliphatic C-H), &PlO s, (C=G), 1240 s, 
(Sic)) cm 
( Br). 

; high resolution calculated for C,,H,,BrO,: 247.0157 ( Br), found: 247.0164 

Bromodiene 6 was prepared in three steps from l,l-dibromo-2,2,3,3-tetramethylcyclopropane. 
Thermally induced dehydrohalogenative ring opening yields 3-bromo-2,4-dimethyl-1,3- 
pentadiene (84%). Metalation (t-buLi, -78'C) followed by an ethylene oxide quench gave a 
homoallylic alcohol (55%) which was converted to bromide 6 by tosylation followed by 
refluxing in acetone/NaBr (62%). 
Williams, J.R.~ Sarkisan, G.M.; S thesis 1974, 32. 
compound 3a: H NMR (CD$, 256) 9.63 (s, lH, aldehyde), 6.10 (s(br), lH, vinyl), 
6.03 (s(br), lH, vinyl), 4.87 (m, lH, vinyl), 4.48 (m, lH, vinyl), 3.26 (s, 4H, 

-S-c9 -s-), 
?2 

2.12-2.05 (m, 4H), 1.85-1.81 (m, 4H), 1.72 (s, 3H, -Me), 1.63 (6, 3H, 
-Me), 1. (s, 3H, -Me) ppn; 13c NMR (CDCl 75.5 MHZ) 8 195.0, 150.5, 147.0, 141.1, 
136.6, 134.2, 128.4, 126.1, 114.0, 72.5, 44.8: 40.7, 34.6, 29.9, 29.0, 23.3, 23.0, 22.3, 
20.2 ppm; IR (melt) 3080 w, (vinyl C-H), 2930 s, (aliphatic C-H), 1690 s, (C=G),3~623~7~2d 
1430 s, (C-c) cm-' 
Compound 8: 

calculated for C iH_, OS : 362.1738, found: 
250 MHZ) d 9.98 (s, l& afde&de), 9.69 (s, lH, aldebyde); 

3.33-3.22 (m, 8H, -S-q 2.91-1.62 (m, 3lH), 1.62 (m, 3H, -Me), 1.49 (5, 3H, 
-Me), 1.31 (s, 3H, (s, 3H, -Me), 1.15 (s, 3H, -Me), 1.07 (s, 3H, -Me) p (the 
'H NMR spectra showed at ambient temperature an endo to exo ratio of -l:l); C NMR 
(CDCl,, 125.8 MHZ) 8 208.6, 207.1, 143.0, 142.7, 141.3, 134.2, 132.9, 132.1, 127.1, 73.7, 
72.6, 56.1, 56.0, 45.7, 45.0, 41.2, 40.7, 40.5, 40.0, 39.6, 38.8, 37.1, 34.9, 33.6, 33.2, 
30.2, 28.9, 28.3, 28.2, 28.0, 27.9, 23.9, 23.5, 23.0, 22.5, 22.3, 21.9, 20.8 pFm (mixture 
of endo and exo); IR (film) 2961 s (C-H) aliphatic), 
cm-' 

1717 s (0, aldehyde), 1652 m (C=C) 
; high resolution mass spectra calculated for C H ,GS,: 362.1738, found: 362.1739. 

Yields for this reaction were somewhat erratic, postfbfy due to the long reaction the and 
large excess of Lewis acid needed. 
Shea, K-J.; Gilman, J.W. Tet. Lett. 1984, 2451. 
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